

Lies, Damn Lies and ARP Replies

Dirty things to do with the IPv4 Address Resolution Protocol (ARP)

Don Stokes
Knossos Networks Ltd

Protocol Walk-through

 Host wants to know MAC address of target IP:
 Host sends request to network
 Target replies
 Done!

Y'think?

 ARP caching?
 How long to you keep an IP/MAC pair around?
 How and when do you refresh it?

Unicast ARP

 Once we have a MAC address for a target, we
can maintain that by regularly polling, using a
unicast ARP request, e.g. every 15 seconds
 No-one else sees the request (or its reply);
 Host failures can be quickly identified.
 Fall back to broadcast ARP request when host

becomes unreachable.
− IP may have moved to a new host or interface

 Described in RFC 1122 (1989)

Unsolicited ARP

 Gratuitous ARP request
 Used at interface initialisation time

Target IP = interface IP or 0.0.0.0
− Identifies duplicate IP addresses prior to configuration
− May prime some ARP caches

 Unsolicited ARP replies
 Used to update ARP caches

− “Fakes” an ARP responses
− Unicast fairly reliable; broadcast less so
− Most ARP implementations don't check source

Proxy ARP

 Answer ARP requests for IP addresses that are
not local.

 Mostly a Bad Idea.
 Cisco turns it on by default (!)
 But we can use this ...

Point-to-Point Ethernet

 If there are only two devices on a segment, why
do they need four unique IP addresses?

− Network
− Concentrator
− Client
− Broadcast

 Surely we only need the client address?
 PPP (and SLIP) folks figured this out ages ago.

Co-operating hosts

 Don't even need ARP
 Every packet received is destined for its target
 Hard code destination MAC addresses

− or send to the broadcast address.
 Or packets can be sent to broadcast address
 Operating systems don't expect this!

 Route client traffic to destination via interface,
just like a point-to-point link.
 Concentrator does not need link-specific IP address

Uncooperative Hosts

 Tell client host a story:
 IP address 10.99.1.11/24
 Gateway 10.99.1.1

 Concentrator advertises only 10.99.1.11/32 to
routing protocol. Other addresses in /24 could
be anywhere ...

 Concentrator ARPs for 10.99.1.11
 But answers all ARP requests for 10.99.1.0/24

 Only if they're from 10.99.1.11.

Concentrator example

Router

VLAN 101
10.99.1.11

10.1.1.99/24
VLAN 102
10.99.1.12

802.1q

VLAN switch

VLAN 103
10.99.1.20

VLAN 104
10.99.2.11

Advertises:
10.99.1.11/32
10.99.1.12/32
10.99.1.20/32
10.99.2.11/32

Traffic between
VLANs trombones
through router at
layer 3, though
hosts may believe
they are on the
same subnet.

Multiple accesses

Router
B

VLAN 101
10.99.1.11

10.1.1.99/24

VLAN 102
10.99.1.12

802.1q

VLAN switch

VLAN 103
10.99.1.20

VLAN 104
10.99.2.11

Advertises:
10.99.1.20/32
10.99.2.11/32

Router
A

10.1.1.98/24

Advertises:
10.99.1.11/32
10.99.1.12/32

802.1q

Fail-over

 Each router can answer for gateway address
(e.g. 10.99.1.1)
 But each router uses a different address for its ARP

requests to clients.
 Router A: 10.99.1.2
 Router B: 10.99.1.3

 Routers agree which host (the active router) will
advertise a specific address.

 Routers may be active for some IP addresses,
inactive for others.

Fail-over

Active router:
 Routes traffic inbound from the client.
 Announces client addresses to backbone.
 Answers all ARP requests from client for subnet

addresses, except itself, client and other router.
 Maintains a regular ARP poll of client host.
 Relinquishes active status if poll fails and other

router claims successful poll.

Fail-over

Inactive router:
 Routes traffic inbound from the client.
 Does not advertise client addresses to backbone.
 Does not answer any ARP request from client.
 Maintains a regular ARP poll of client host.
 Takes over active status if primary router indicates

its ARP poll has failed, and polling is functioning.

Fail-over

 Inactive and active router are selected on an IP
client by IP client basis
 Router may be active for some clients and inactive

for others
 Clients may share the same layer-2 subnet

 Clients are identified by the source IP address in
ARP requests.

 We don't have to tell every client on a subnet the
same story!

Fail-over

 No magic MAC addresses, unlike VRRP and
friends.
 No changes to MAC address.
 No changes to layer 2 MAC table entries.

 No extraneous protocols on client links
 Only “normal looking” ARP on client subnet.

 Regular polling maintains MAC table entries in
switched infrastructure.

Load balancing

 Since clients can be distributed between
routers, we can apply appropriate rules as to
which hosts are active for which clients.

 Static load-balance based on knowledge of L2
topology.
 Primary active router is closest to client.

 L2 topology generally not easily available.
Could be done dynamically.
 Could potentially be done by timing ARP responses:

active host is fastest response.
 Or by load.

Implementation

 FreeBSD
 NetGraph node, creates “point-to-point”

interface (like PPP/SLIP/tunnel).
 Clustering and information distribution protocol.

 Experimental “Potato” protocol.
 Could be used in software defined network.

 Controller ARP daemon performs ARP protocol
 ARP daemon instructs network via OpenFlow

IPv6

 No need for “point-to-point” semantics.
 No shortage of addresses!

 IPv6 more difficult to identify end addresses
 May be fixed address, or EIU-64.

 Fail-over technique can apply of we assume
that one active device represents an entire
subnet when determining active and inactive
hosts.
 True on genuine point-to-point link.
 Mostly true if all client hosts are co-located.

Summary

 ARP not a routing protocol.
 But can be flexible.

 If you are prepared to wrap some extra brains
around it.

